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ABSTRACT 

Mahlo used a method by which fixed points of an enumeration of regular 
cardinals were employed to get a hierarchy of "large cardinals." He also 
employed a second method which, in a certain sense, is much stronger than 
the first. Here the methods are investigated and generalized and the relations 
between them are clarified. This stronger method turns out to be a kind of 
"least upper bound" to all "fixed-points operations." Possibilities of strength- 
ening these processes in a natural way are pointed out. 

0. Introduction. In his articles from 1911-1913 (cf. [1], [2] and [3]) Mahlo 
uses the method of  taking fixed points of an enumeration of ordinals, in order 
to arrive at "big ordinals." Consider an increasing sequence of ordinals 
Uo, U t , " ' , z~ , ' " ,  a fixed point would be an ordinal which is equal to its index, 
i.e. 2 = ~a. Now in order that this should give us "big ordinals" it is first required 
that the sequence should be with "large enough" gaps. For instance, if there are 
no gaps at all and the sequence runs through all ordinals, then every one will 
be a fixed point. This, however, is not enough. Consider the sequence of all car- 
dinals (being identified with their initial ordinals), COo, COl, ..., ~oa, . . . .  As it is well 
known there are lots of  fixed points here. Just put ~b(0)= ~o~,qg(n + 1 ) =  o~,tn) 
andthen Un<ooO~,t~) is a fixed point. Fixed points which are obtained in this way 
will, as a rule, be singular and, consequently, do not merit the title "big ordinals." 
To avoid these " b a d "  fixed points, Mahlo limits himself to regular ordinals, 
and here, indeed, we do get something "b ig , "  because the fixed points which 
are regular are exactly the weakly inaccessible cardinals. The way Mahlo does 
it is to start from the regular ordinals, which he calls the no-numbers, and to take 
fixed points of  their enumeration. This makes no difference, since the fixed points 

in the enumeration of  the no-numbers are exactly the regular fixed points in the 
enumeration of all cardinals. These are the hi-numbers, and the natural way to 
continue the process is to enumerate them in their order and take the fixed points 
of this enumeration, which will get us the n2-numbers. In the same way one gets 

from the ~2-numbers the n3-numbers and so on. 
After continuing the process o~ o times one gets the n,oo-numbers by taking the 

intersection of all the classes n~ where n < o~ o. The general definition of n~-num- 
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bers, where ct > 0, can be stated, for ~t a limit or a non-limit ordinal, by saying 
that a ~-number is a fixed point in the enumeration of the ~p-numbers, for all 

fl<Ct. 
It should be remarked here that the existence of ~1 numbers > 0 cannot be 

proved; indeed, it is consistent to assume that they do not exist. Moreover, for 
every model M of set-theory (say, Zermelo-Fraenkel's), in which there are ~x+ 1- 
numbers > 0, where x and x + 1, are, respectively, an ordinal and its successor 
in M, there is a submodel N, of set-theory, which is transitive in M, having x as a 
member, in which there are ~-numbers > 0 but not ~+l-numbers  > 0. The 
clause "' > 0"  is added here because according to Mahlo 0 is considered among 
the regular cardinals, the next one being O~o. This makes 0 a ~v-number for all v. 
If one starts from o~ o it can be omitted. 

The process of taking fixed points is not finished by now. One can continue 
and ask whether there are ordinals v which are zoo-numbers. Enumerating all Ir~ 
numbers: no,,, 7r1,~ "", 7ra,,, ..., since 0is trivially rco.,, it can be shown that if v is a 
Try-number then v = 7h,,. Thus, one can consider fixed points for the second index. 
Enumerating them, one can take fixed points, and continue likewise "indefinitely." 
A clarification of this "indefinitely" is one of the aims of the present work. 

Mahlo introduces a second kind of "big ordinals." An ordinal is called by him 
a po-number if it is a regular ordinal and every sequence of ordinals, whose limit 
it is, has an initial whose limit is a smaller regular ordinal. A p~-number is a 
po-number having the analogous property with respect to po-numbers, that is, 
every sequence whose limit it is has an initial whose limit is a smaller po-number. 
In this way the p~-numbers are defined for all 0e, the case where 0~ is a limit ordinal 
being taken care of by forming the intersection of all previously obtained classes. 

It is shown by Mahlo that this second method is "stronger" than the first in 
the sense that every po-number is equal to some v which is a ~r,-number. Moreover 
the first v which is a 7r, number is not a po-number. The proof seems to indicate 
that one cannot get at the po-numbers by iterating the fixed point process. Thus 
every po-number is a fixed point in the enumeration of all v's which are n~-numbers 
---and this seems to hold for any "indefinite" continuation of the fixed point 
process. The same situation takes place if one compares the numbers obtained 
from the p,-numbers by fixed point methods with the p,+~-numbers. 

It is the aim of this paper to establish the exact relationship between the two 
processes and to show in which sense the p~-numbers are "bigger" than those 
obtained by fixed points methods. It turns out that the second process can be 
described as the "supremum" of all iterations of the fixed point methods, and is 
itself a kind of "generalized" fixed point operation. This generalized process 
when applied, say, to the operation which determines the po-numbers does not 
yield the Pl numbers but much "larger"  ordinals whose relation to the Po numbers 
is perhaps more analogous to the relation which the Po numbers bear to the 
no-numbers. 
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Finally, the way is open to even "stronger" operations. 

2. Preliminaries. Cardinals are identified with their initial ordinals, and every 
ordinal is identified with the set of all its preceeding ones. 

O r d =  the class of all ordinals 
We will consider functions whose arguments and values are sets or proper 

classes of ordinals; moreover we will form classes of such functions. Thus classes 
of classes of classes of... to the fourth or fifth degree are used. This, howeves, is 
completely inessentiak and is being done for convenience only. All our functions 
will have the property: 

a ( X  n ~) = 6 ( x )  n 

where G is the function, X any class of ordinals and ~ any ordinal.All the oper- 
ations on the functions will preserve this property. The structure will have, thus, 
the local property that ordinals < ~ are not affected by the question whether or 
not our sets of ordinals include ordinals > ~. One can, therefore, limit oneself 
from the beginning to an initial section consisting of all ordinals < ~ and then 
let ~ be arbitrary large. In fact, the whole work can be carried in Zermelo-Fraen- 
kel's set theory at the cost of encumbering, somewhat, the formulation. 

Those who still feel unsure may imagine that all the classes involved are subsets 
of 0, where 0 is some strongly inaccessible cardinal, and Ord = O. 

For the sake of convenience we introduce, a new symbol, " ~ " ,  and make the 
convention that ~ < go for all ordinals ~. go is not to be considered an ordinal, 
and symbols such as "~" ,  "fl",--- which are used to denote ordinals never denote 
O O .  

A sequence X = <X~>~<~o (<X~>~<~) of classes of ordinals is decreasing if 
for every ~ < p (every ~ < fl < 6) X~ ~_ Xp. It is continuously decreasing if for 
every limit ordinal ~ > 0 (6 > ~ > 0) we have X~ = na<~xp, go (or 6) is the length 

of the sequence. 
All the functions to be considered will have as arguments and values classes of 

ordinals. D(f)  is the domain of the function f. 

f > O if D(f)  = 0(9) and f ( X )  D_ g(X) for all X e O(f). 

If  {fi}i ~ff~ is family of functions then n i ,  tf~ is the function whose domain is 

n~iD(f~)  and whose values are given by: 

( At ~ff,) (X) --- n ,  ~tf,(x) 

F = <F~>~<oo (<F,>,<~) is a decreasing sequence of functions if for all 

~ < fl ( ~t < fl < 6 ) F , >= F p . 

It is continuously decreasing if it is decreasing and F~ = np<~F~ for all limit ordi- 

nals (all limit ordinals < 6). 
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If X is a decreasing sequence of classes of ordinals then X ° is defined by: 

X ° = {~ :a e X~}, if = (X~>~< ~o 

X ° = {a: ~ < 6 and cce X,} u n~<~X~, if X = (X~)~ <~. 
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X ° is referred to as the diagonal of X. 
If F = ( F , ) ,  is a decreasing sequence of functions then F ° is defined by: 

D(F °) = D(Fo), F°(X) = YJ), where Y, = F~(X). 

A function f is a local thinning function if it has the properties: 
X e D(f)  and Y ~ X imply Y e D(f). 
f ( X )  ~_ X for X e O(f)  
f ( X  n a) = f ( X )  n ~, for all X e D(f)  and all ~, (this is equivalent to: for all fl, 

fl e f ( X )  iff fl e f ( X  (3 (fl + 1))). 
We will abbreviate and speak about a LTF or say that f is a LTF, f e  LTF. 
f i s  said to be monotone i fX_c Yimpt ies f (X)  c_f(y),  for all X, YeD(J) .  
(Not every LTF is monotone. Consider, for example, the function which, for 

evry X, has as a value the set of all members of X which are not limit points 

of X) 
The composition of two functions, f o  g, is defined by: 

D ( f o  9) = {X: X e D(g), 9( X)  ~ D(f)}, (f© g) ( X)  = f (g( X)). 

PROPOSITION 1. (i) I f  f ,  g e LTF and D(f)  = D(g) then f o g  e L T  F 
(ii) {fi}~ ~I-- LTF implies n~ ~ l f i eLTF 
(iii) I f  P is a decreasing sequence of members of LTF then FOe LTF. 
(iv) The statements (i)-(iii) are true if LTF is replaced by the subclass of all 

the monotone functions in LTF. 

The proof  is straghtforward. 
Let I be the identity function (I(X) = X, for all X) f~ is defined by transfinite 

induction as follows: 

f o  = I restricted to D(f)  

f ~ + l = f ° f ~ ; f ~ =  n fP, if a is a limit ordinal. 

Let f e L T F ,  let F be the sequence ( f ' ) ~  ~ o,d then f ais defined to be F °. 
means that fa(X)  = {e :a  ef ' (X)}.(*)  

Let X be any class of ordinals. Let ~o,~1, "",oh, "" be the enumeration of X 
according to the natural order. Then th(2,X) is the 2th ordinal of X, which is 

(*) The definitions of f~ and fzx are due to D. Scott. 
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~ ,  if there is such, or oo if there is no such ordinal. Jp(X) is defined as {4: 4 = ~a}. 
fp(X) is the class of the fixed points of X. We define q(X) as {0q,0c 2 ... } i.e., the 
class obtained by deleting the first member of X, and put q(0) = 0. 

From proposition 1 it follows that i f f  ~ LTF then also f~ ~ LTF, for all ~, and 
f a E L T F .  The same holds for monotone LTtr's. 

It is easily seen that: 

fp =qa. 

Since q is, obviously, a monotone LTF,  so is fp. 
The following is also easily verified. 

PROPOSITION 2. (i) X ~ Y implies th(4, X) < th(4, Y). 
(ii) If  th(it, X) < oo then th(v, X) is strictly increasing as a function of v, where 

v < i t .  
(iii) 0t < th(0t, X) 
(iv) If  th(a, X) > a then or, th(a, X) ~.fp(X) 

3. The n-numbers and the p-numbers. Rg = class of all regular ordinals. 
An ordinal a is regular if a is a limit ordinal > 0 and, a # U a < ~c9 whenever 7 < a 
and a p < a  for all f l < ? .  

The members ot ft/ '(Rg U {0}) is what Mahlo, [1], calls the n~-numbers. 

n r,~(X) = D f  th(y, Jp~(X)). 

The following proposition sums up the properties of  the doubly-indexed array 
n~,.(x). 

PROPOSITION 3. (i) I f  It > 0 then ct = nx,u(X) for some 4, iff for all v < # 
= n~ ,~(X) .  

(ii) nz,(X) as a function of v is non-decreasing. 
(iii) I f  It > v and na,~(X) < oo then the following three conditions are equivalent 
na,z(X) > n~,~(X), nz,~,(X) ¢ f t  g`+ t(X), 4 6fl ?+ X(X). 
(iv) I f  It > 4 and 4 + 1 • X then n~,,x(X ) ~ na.~(X ). 
(v) Assume that # > 4 and that either n~,~(X) < oo or n~,x(X ) < oo. Then 

n~,~,(X) = n~,,x(X) iff  # = n~,~,(X); each side implies that 4 is the least ordinal 
which is not in X. 

Proof. (i) is straightforward. 
(ii) follows from the fact that fp~(X) is decreasing with v, and from proposition 
2(i). 
(iii) Each of  the conditions 4~f1¢'+l(X), na ,~ fp"+l (X) i s  equivalent to 

4 = n~,,(X). Now, zr~,(X) >_ n~.~(X) > 4. Hence 4 = n~,j,(X) implies zc~,,(X) 
= na,~(X). Consequently nx,,(X)> rcx.,(X) implies each of the other two con- 
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ditions. On the other hand n~,~,(X)= rcx,,(X) means, since 7rx,~(X)< 0% that 
na,~(X) ~ fp"(X), hence rcx,~(X) ~fp v+l(X), implying 2 = rcx,v(X ) = rca,~(X ). 

(iv) If  na,u(X) = ~ it is obvious. Otherwise let V be the first ordinal which 
is not in X. Then ~ < 2 and hence rc~,u(X) < ~ .  Obviously ~ CfpU+ 1 (X).Hence, 
from (ii) and (iii) it follows that rcr,,(X ) is strictly increasing as a function of  v, 

for all v </~. Therefore 7rr,~(X)> tt, Hence nx,~(X)> p. Put ~ = 7ra,u(X). Now 
~efp~(X)~_fpX+~(X), therefore ~=zcg, x(X). Since ~ > #  we have rcu,x(X) 
=< ~ , ~ ( x )  = ~ = ~ , ~ ( x ) .  

(v) If  7ra,~(X) = =u,a(X) < m, then, putting ~ = rca,~(X), it follows by (i) that 
= n=,a(X). Hence ~ = # and we get # = 7ra,u(X). On the other side, if/~ = =a,~(X), 

then, again by (i), # = rcu,a(X) and therefore 7ra,u(X)= 7ru,a(X). 
It is clear that if 2 + 1 ___ X then rca,,(X ) = 2, for all a. Hence, if rc;,,u(X) =/~ > 2 

we have an ordinal < 2 which is not in X. Let ~ be the smallest one, By (iv) we 
have: ~,~(X) < 7rr,u(X). Since # < rc~,,~(X) one gets: # < rc~,~(X) < rc~,~(X) < 7~a,u(X ) 
= ~t. Hence rcr,a(X) = 7~a,~(X ) < m and, consequently, y = 2. 

The class of fixed points for the second index is F'(X) where F = (fpV),<~o. 
We define L(X), the class of all limit points of X, as the class of all ordinal 

which are of the form Oa<~,a, where ~a is a strictly increasing sequence of members 
of X and # a limit ordinal > 0. Thus 0 ~ L(X). 

PROPOSITION 4. (MAlqLO). If  X -~ Rg then fp(X) = X A  L(X). 

Proof. If  ~ = th(cq X), then X n ~ forms a strictly increasing sequence of  
type ~, ~ being a limit ordinal. The union of this sequence is therefore > ~, on the 
other hand it is < ~. Hence ~eL(X). 

If  ~ e L(X) then ~ = U ~ < ~  where ~ is a limit ordinal > 0 and ~ a strictly 
increasing sequence of members of X. Since ~ is regular we have ~ = ~. Put 

Y = {~:  2 < 7} u {~}. Then ~ = th(~, Y). Since Y ~ X it follows that if~ = th(fl, X) 
then fl >-_ ~. But we must have fl < ~. Hence ~ = th(~, X). 

Note that the argument of the first half of the proof  shows that, for all 
X, Jp(X) O L(Ord) c_ L(X). 

We define X to be closed in Y if L(X) r3 Y ___ Y. If  X _ Y this actually means 
that X ts a subclass of Y which is closed in the order-induced topology, tin gene- 
ral it means that X is a closed subclass of X u Y. A function f is closed in Y 
if, for everygX e D(f), if X is closed in Y so is f(X). 

It is easily seen that if Xi is closed in Yfor  all i e I so is Ni  ,IXi • Consequently 

iff~ is a function which is closed in Yfor all i e I so is N~ ~1fi. I f f a n d  # are closed 

in Y s o i s f o g .  

PROPOSITION 5. (i) I f  X is continuously decreasing sequence of classes of 
ordinals, each of which is closed in Ythen XDis closed in Y. 

(ii) If  F is continuously decreasing sequence of functions, each closed in Y, 
then F D is closed in Y. 
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ProoL Assume with no loss of generality that X = (X~)~<®, because, if 
(X, )~<~,we  can replace it by X*, where X*:~X~ for a < 6  and X* = 
oa<~Xa for a > ~. Then X ° = (X*) °and each X ' i s  closed in Y. 

Let a e L ( X D ) n  Y. Then a =  Ur<~a~, where (a~)~<6 is a strictly increasing 
sequence of members of X o and t5 is a limit ordinal, are  X~, for all V < t~. Hence 
aa ~ X, ,  for all ~ < fl < ~. Consequently a ~ L(X~) for all V < ~, and, since X,.. 
is closed in Y, it follows that a ~ X ~  for all ~ < ~5. Therefore a ~ n r < ~ X ~ ,  but 
since X is continuously decreasing this intersection is X~. Thus, a e X~, i.e. a ~ X ~. 

(ii) follows from (i). 

PRO]'OSmON 6. I f  X ~ Rg and X is closed in Rg then fp (X  O L(X)) ~ Rg 
= fp(X). 

The proof follows the usual considerations. The function fp(X u L(X)) ~ In, 
where In is the class of inaccessible cardinals was used by Ltvy in [4]. This 
amounts exactly to fp(X) for closed subclasses of In. 

DEFmmON. h(X) is the class of all limit ordinals, a e X, such that, for every 
Y ~ ct, i f  a ~ L(Y)  then L(7 ) n X n a ~ 0. 

The function h, applied to Rg and iterated, was first used by Mahlo. 
I f  ~ ~ h(X) then a ~ L(X), because otherwise, for some ~ < a, we will have 

{4: fl < ~ < a} n x  = 0, contradicting the requirement for Y =  {~: fl < ¢ < a}. 
D. Scott suggested the version: ~ e h(X) if it is a limit ordinal and, for all Y_  ct, 

if Y is closed in a and a e L(Y) then Y o X # 0. This version is equivalent to the 
one given here for X c L(Ord). In general we have hs(X) ~- h(X), if ha is the 
function as defined by Scott. 

Obviously h is a monotone LTF. 
It can be easily seen that, for X ~ R9, h(X)~_fp(X). (Letting {~x}z be the 

enumeration of X, if a = a a > 2 consider fl = U ~ < ~  and Y = {4: fl < ~ < a}.) 

THEOREM (MAHLO). (I) I f  Y ~_ Rg and rcu,~(Y) > lt, v then z~p,~(Y) (~ h(Y). 
(II) I f  Y ~ Rg then the first ~ > 0 such that a ~fp~(Y) does not belong to h(Y). 

This follows from the generalization which we formulate and prove next. 
The idea of the following theorems is to indicate a sense in which the function 

h is "s t ronger"  than other "decent"  functions. Hereby, "stronger" roughly 
means that its application yields smaller classes of ordinals, whose members can, 
therefore, be considered as "larger ."  "Decent"  includes, among the rest, the 
function fp, as well as any function fp, fpA, and lots of others which are specified 
in this section. 

Theorem 1 implies that, under certain conditions, a regular a, which is in 
h(7), cannot be removed by an application of any function which arises out of a 
"decent function" by means of a process which involves composition of functions, 
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iterations of less than ~ times, and forming the diagonal of a continuously dec- 

reasing sequence of  functions. 
Mahlo's theorem, which is implied by Theorem 1, deals with two special cases 

which are typical to the general state of affairs. The first case is that where 

= G.~(Y) >/~, v. Here, applying fp~ will still leave ~, but one more application of 
fp (or # + 1 applications of q) will remove it. In the second case ~ is the first fl 
such that fl = fpa(y).  Here an application of  the diagonal of <fP~)B < ~ will leave ~, 
but one more application of  fp (or q) will remove it. The conclusion is that in 
both cases ~ 6 h(Y). 

4. The general method. 

THEOREM 1. Let f be a LTF such that every member of D(f) is a subclass 
of Y, and, for all X e D(f),  

$ (x) c~ L(Y) = L(X) n x .  

Let ~ e  h(Y) ARg. 
(I) If  Z ~ D(f) is closed in Y, then ~ e f(Z) implies ~ ef(f(Z)) 

(II) If  0 < fl < ~ and, for all 7 < fl, Xr e D(f), Xr is closed in Y and ~ ~f(X~) 
then ~ ef(n~<aX~). 

(III) If  X = <Xv>r<~ is a continuously decreasing sequence and, for all 7 < ~, c5, 
we have o~f(Xr), then ~ ~f(XD).(*) 

(The theorem can be generalized by omitting the requirements that f is a LTF 
and that D(J) consists of subsets of Y. The requirements which have to be made 
are: 

f (X)  ~_ X t~ L(X) 0 Y and L(X) ~ f ( X )  0 L(Y). 

In (I), (II), (III) one has to add in every place the condition that the classes in 
question are in D(f). The proof  is the same). 

Proof. The ideas are the same as in the proof  given by Mahlo for the previous 
theorem. 

(I) In order to show ~ e f(f(Z)) it suffices to show a e L(f(Z)). Since f(Z) 
~_ Z n L(Z) it is enough to show ~t ~ L(Z n L(Z)). Now ~ el(Z), hence ~ e L(Z). 
Since ~ e h(Y), ~ is not confinal with 09 0. This is easily seen to imply ct ~ L(L(Z)). 
Consequently, for every fl < ~, c¢ e L([fl, ~) o L(Z)), where [fl,ct) = (~: fl < ~ < ~}. 
Since [fl, ~ ) o  L(Z) is closed in ~ it follows that [fl ,~)tn L ( Z ) n  Y # 0. But Z 

is closed in Y, hence L(Z) n Y ~_ Z. Consequently, for every fl < a, [/3, ~) n Z 
L(Z) # O, which proves that a e L(Z ~ L(Z)) 
(II) By induction on/3. For  fl = 1 -obvious. If/3 = 6 + 1 and the claim holds 

for fl = 5 then ~ f ( o  ~<~X~). Putting Z t = n~<~X~ and Z2 = X~ it suffices to 

2. The theorem is also true if we use Scott's definition of h. Indeed, the same proof is valid. 
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show that ~ ef(Z~ n Z2), from the assumptions that ct ef(Z3 i = 1, 2, and Z~ are 
closed subclasses of Y. Now ~ e L(Z~) o L(Z2). Hence, given fl < ~, one can 
construct a sequence Co < (o < ~ < (~ < "'" < ¢~ < (~ < "'" where C~ e Zt,(~ e Z2, 
Co > fland ~,(~ < ~. Then U~<o~o(.= U~<oo(~ and it is < ct, since ct is not confinal 
with co o. This shows that c~ is a limit point of L(Z~) n L(Z2), and is, consequently, 
a limit point of I t ,  c~) n L(Z~) n L(Z~), for all fl < c~. Since [fl, ~) n L(Zt) n L(Z2) 
is dosed in ~, its intersection with Yis non empty. Hence ~ e L(Y O L(Z~) n L(Z2)). 
But Y AL(Z3  ~_ Z~, i = 1,2, the Z~ being dosed. Therefore cteL(Z~ AZ:) .  Since 

e Zt  n Z2 this implies ~ ef(Z~ n Zz). This takes care of  the passage from 3 
to 6 + 1 .  

Assume (II) to hold for all/~ < 3 where 3 < ~ is a limit ordinal. Given <Xr)r<,, 
put Z r = n ~ < ~ X  ~. Obviously n r < , z ~ =  n~<~x~. By our assumption ~ f ( Z r )  
and hence ~ ~ L(Zr), for all 7 < 6. Moreover, the Zr form a decreasing sequence of 
classes which are closed in Y. Let/~ be any ordinal < ~. Let ~o,o be the first ordinal 
in Zo which is > / L  In general let ~o,~ be the first ordinal in Zr which is > Ua<rC~o, a- 
Here we use the fact that ~ is regular to infer that U~<v~o,r< c~, for all c5' < 3. 
(This is actually proved by induction on ~5'. If  it is true for ~5' it is true for ~5' + 1, 
because ~ e L(Zv), and for limit ordinals it is true because they are < ~ and ~ is 
regular.) Now continue to define U~,o as the first member of Zo which is 
> U~<,C~o,~, cq,~ as the first member of Z~ which is > U~<r~,~ and so on. 
One gets in this way a double sequence (c~,,~)~<,,~<~ having the properties: 

< 0~o o 

~ , r eZ~  and U~.~, ,~ < ~t,.~ < 

The regularity of ,t insures that all the ,t,,r are < ct. 
Put ~ = U~.:~0~,,~. Then fl~eL(Z~) for every ~ < iS, and U , < ~ ,  = ~. Let 

T = (/1,: r /<  ct} UL({fl,: t / <  ~}). Since T is dosed in ~ and ~eL(T) we have 
T A Y # 0 .  But C e T  implies CeL(Zr), and L(Zv) AY_~Z~, therefore 

T n  Y__G Ur<~Z r. Thus, [fl,~)nnr<~Zr#Oforeveryfl<ot, implying ~ ~L(nr<~Zr).  

Since 0~e n~<~ z~ we have ctef(nr<~Z~). 
(III) Since, for all ~ < ct, ~ ef(X~) we have ~ e X D. It suffices to show ~ e L(Xa). 

With no loss of  generality it can be assumed that the length of X is ~. For if 
X = (Xr)~< ~ and 3 < ~, then X D _ = n , . x , ,  and by (II)~ e L ( n , . , x , )  

Let fl < 0~. Let ~o be the first members of Xo which is > ft. Let ~t be the first 
member of X~o which is > ~o. In general, let ~ +  t be the first member of X ~  
which is > ,q, and, if 2 is a limit ordinal, let 0t~ = Ur<~ct r. The regularity of 
implies that ~ < ~ for all ;l < ct. The set {0~a} a, where 2 ranges over all limit ordinals 
< c~, has ~ as its limit and is closed in ~. Therefore, for some arbitrary large limit 
ordinal 2 < ~, we have ~x e Y. Now, ~ = U ~ . : ~ +  t and ~+  ~ e X~. Hence ~aeL(X~,) 
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for all ~ < ;t. Since X,~ is closed in Ywe have ~ ~ X,~, for all 7 < A. Consequently 
~ n r < a X , ~  =X,~.  Therefore c q e X  D, which shows that cteL(Xn). 

To deduce Mahlo's theorem from Theorem 1, assume that ~ h(Y), where 
Y ~_ Rg. The restriction o f fp  to subclasses of  Ysatisfies the conditions which are 
imposed on f in Theorem 1. We know also that h(Y) ~ fp(Y) .  Applying (I) of  
Theorem 1, one deduces that ct ~fp2(y) ,~ efp3(¥) ,  and so on. Using (I) together 
with (II) one deduces that ~efp '+~(X)  for all v < ~. Consequently ~ = rc,,,.(X) 
for all v < ct. This implies the first part of  Mahlo's theorem. To get the second 
part, consider X = ~X~)a<~ where X;. =fpa(y) .  Since ~ f p ( X ~ )  for all 2 < ~, 
we have, by (III), ~ efp(X~). Hence ~t cannot be the first member o f X  °. 

D~VINITION. For f ~  LTF  define Q(~,f) as the smallest class, E, which satisfies: 
(i) f and the restriction of  I to D(f)  are in E. 
(ii) 9 ~ E implies f o g  ~ E. 
(iii) If  fl < ~ and F = (F~)~<a is a sequence of  members of E then n < Fa e E. 
(iv) If  F is a continuously decreasing sequence of  members of  E whose length 

is ~, if ~ is a limit ordinal, and ~ + 1 if ~ is not a limit ordinal, then F ° ~ E. 
There are classes which satisfy these conditions, e.g., the class LTF. The in- 

tersection of all of these is Q(ot,f). 
One can replace (iv) by the stronger condition: 
(iv') If  F is a continuously decreasing sequence of members of E then 

F° ~E. 
It makes no difference to the statements which follow. This is so because: 

PROPOSITION 7. (i) I f  X is a decreasing sequence of classes of ordinals, of 
length > • and Y is the sequence of length ct defined by: Yx = Xx n ( ~ +  1), 
for all 2 < ~, then y O n  ~ = X ° o o~. 

(ii) I f  in (i) ce is a limit ordinal and X is continuously decreasing then also 
y O n  (~ + 1) = X ° n (~ + 1) 

(iii) I f  F is a decreasing sequence of LTF'  s, of length > ~ and G is the initial 
segment of F of length or, then for all X ~ D(F°), FD(x) n o~ = G°(X) N o~. 

(iv) I f  o: is a limit ordinal and F is continuously decreasing then F°(X) N (~+ 1) 
= 6 (x) n + 1). 

(iii) follows from (i) and (ii) whose proof  is straightforward. 
t~  If Q ( , f )  is the class obtained by replacing (iv) by (iv'), and if g ~ Q'(~,y) 

then the restriction of g to subsets of ~ + 1 is in Q(~,f). This is shown by proving, 
with the help of Proposition 8, that the class of  all LTF's  whose restrictions are 
in Q(~,f) satisfies the conditions of Q'(~,f). 

PROPOSITION 8. (i) Q(0t,f) _c L T F  and all its members have the same domain 
(ii) h,g ~ Q(~,f) implies h o g ~ Q(~,f). 

The proof (i) is obvious. (ii) is proved by showing that, for any given g ~ Q(~t,f), 
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the class of all functions h which satisfy h o g e Q(0qf) satisfies the conditions of  
the definition of Q(~,f). 

DEFINITION. d~.:(X) = (~ {g(X): g e Q(g,f)}, X e h( f )} .  
fV(X) = (~: ~ e 2,.:(X)}. 

Thus f v  = j ~  where J: = <J~ :>~ ~ o,a 
The remark following proposition 8 implies that f v  would have been the same 

if, in the definition of Q(~t,f), (iv) is replaced by (iv'). 
The operation f - , f V c a n  be described as the "supremum" of all the iterated 

diagonal operations. To see how " s t r o n g " f V i s ,  let ~ be any ordinal > 0. Let f 
be a LTF and let g be its restriction to subsets of  0~ + 1. 

We will have g#~ Q(~,g) for all ~ < 0~. Hence, since the domain of  g is limited 
to subsets of ~ + 1 and <g#>p<~ is continuously decreasing, we have gae  Q(~,g) 
Going on, this implies that (g~)%Q(~,g)  and so on. If  ga# i s  defined by: 
gap+ 1 = (ga#)Ar3 gap and g aa = f')~<~ga~, for limit ordinals 2, then g~#e Q(~t,f) 
for all fl < ~. If  g* is obtained by diagonalizing over this sequence, then since 
the sequence is decreasing continuously, g*e  Q(c~,f). One can continue on to 
form (g*)*, .-., diagonalize over this, etc. As long as we diagonalize over sequences 
which are decreasing continuously we are still in Q(~, g). Therefore g v, g . . . .  are 
all > gV. Since this is true for all ~ we have: fA>fV,  f .  > f V  ... etc. 

f v is also defined by a diagonal process. However, this is different from the 
diagonalizations used in defining the members of Q(~,f). In Q(~,f) we allowed 
for diagonalizations over continuously decreasing sequences of functions. Now 
<J~.:>~ ~orais, ingeneral, not continuously decreasing. Take for example f = q. 
It is not difficult to show that qV(Ord) = Rg - (COo} and Rg - {COo} is not closed 
in Ord. On the other hand q is closed, and hence, using Proposition 4, it follows 
that every member of Q(~ q) is closed. Consequently the J~,q's form a sequence of  
closed functions. If  it were continuously decreasing then qV would have been 
closed, which it is not. 

All the diagonal operations on continuously decreasing sequence preserve the 
property of being closed. The fact that qV is not so indicates that here we made 

indeed a jump. 

THEOREM 2. (I) I f  f e LTF is closed in Y, Y e D(f), and, for every X c y, 
f ( X )  n L(¥) = L(X n X ,  then h(Y) n Rg ___fV(y). 

(II) For every Y c Rg, h(Y) c_ f pV( y)  

Proof. (I) Let ~ ~ h(Y) :3 Rg. We claim that, for every g e Q(~,f), ~ ef(g(Y)), 
hence a fortiori ~ e g(Y). 

Put T = {g: g is closed in Y and ~ef(g(Y)}.  Since ~ L ( Y ) ~  Y, we have 
e f (Y)  = f(I(Y)). Thus, I e T. By Theorem 1 (I), putting Z = Ywe get ~ ~f( f(¥)) .  

Hence f e  T. If  g e T then 0~ ef(g(Y)). Putting Z = g(Y) we get, by Theorem 1 

(I), ~ e f ( f (g (  Y))). 
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The other conditions in the definition of Q(ct,f) are also satisfied by T. If, 
for all ~ < fl, F~, is a member of Tand fl < ct, then we deduce from Theorem 1(II), 
by putting X~ = F~(Y), that f")r<aFy E T. The last condition is deduced in a similar 
way. Hence T ~_Q(ct,f). Consequently ~ 9 ( Y )  for all OEQ(~,f), implying 

(II). By Proposition 4, we have, for every X ~_ Y, fp(X)-- X n {L(X) L) {0}), 
implying f p(X) t3 L(Y) = X r3 L(X). Then apply (I). 

q.e.d. 

PROPOSITION 9. If  f <  9 and both are monotone LTF's then f v ~  Or.. 

Proof. One shows that for every h ~ Q(,t,O) there is h'e Q(ot,f) such that 
h'  < h. This is done by proving that the class of functions h for which such an h' 
exists satisfies the conditions of Q(~,g). 

If  0 6 x then fp(X) < q(X). Hence, by Theorem 2 we have h(X) =_ qV(X) for 
every X ~ R9. Actually, equality holds. 

THEOREM 3. For every X, q~ (X) ~_ h(X). 

Proof. Assume ~6h(X) and show ot~q~(X). First let 0t be a limit ordinal 
> 0. Let Y~ ~ he such that ~ L ( Y )  and X ~L(Y)  = 0. Enumerate YU L(Y) in 
the natural order: %,~1, " " , ~ , ' " , ~  < ~5. Then for limit ordinals 2 > 0 we have 
c~x = Ur<xTx and ~x~X. Define: fa = q'~+~, fo r / l  a non limit ordinal or 0, and 
f~ = q~ otherwise. Thenfa ~ Q(ce, q) for all 2 < iS. If  t~ < 0t then q "= 0 x <~fa e Q(a, q) 
hence q~+ 1 ~ Q(ct, q). But ct $ q~+ l(X) hence ~ $ qV (X). If  t~ = ct then if 2 < ~ is a 
non limit ordinal or 0 we have 2 < ~tx < ~x + t, hence ;t 6fa(X). Otherwise 2 6 X 
and a fo r t io r i  2$fa(X). Consequently F ° ( X ) ~  = 0 where F = (fa)a<~. This 
implies ct ¢ q(F°(X)). Since q ~ F ° ~ Q(~, q) it follows that a ~ q V(X). 

I f  ~t = 0 the claim is obvious. If ct is a non-limit ordinal > 0, let ~ = fl + k, 
where fl is a limit ordinal. Then q#= f')~<#q~ ~ Q(ct, q). Hence, applying (i) of the 
definition k + 1 times, we have qa+k+~ Q(~,f). But ~ 6 q~+ l(X). 

q.e.d. 
Thus for X ~ Rg we have: 

h(X) = fp~(X) = qV(X). 

It seems that the " j ump"  from q to h amounts to the V operation. Thus, if 
one wishes to make such another jump, the natural way would be not to iterate h 
but to take h v. One can of course start iterating the V operation take fixed points 
etc. In this way one gets a new operation, V*, which is defined similarly to V. 
The difference is that in this definition Q*(~,f) is required also to be closed under 
V, i.e. g ~ Q*(~,f) should imply gV~Q*(~t,f). One can still continue on in this 
direction, getting stronger and stronger operations and adding them to the set of 
operations which is used to define Q(ct,f) but here we prefer to stop. 
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